知识分类:文化教育 | 2024-03-31 周日 20:24

诱导公式

(1)

sinx=sin(x+2kπ)

cosx=cos(x+2kπ)

tanx=tan(x+2kπ)

k∈Z

原理:终边相同的角同一三角函数值相同(或可用三角函数图像的周期性验证)

(2)

sin(-x)=-sinx

cos(-x)=cosx

tan(-x)=-tanx

(3)

sin(π+x)=-sinx

cos(π+x)=-cosx

tan(π+x)=tanx

(4)

sin(π-x)=sinx

cos(π-x)=-cosx

tan(π-x)=-tanx

原理:三角函数值中,正弦一二象限为正,余弦一四象限为正,正切一三象限为正(终边)

(5)

sin(π/2+x)=cosx

cos(π/2+x)=-sinx

tan(π/2+x)=-cotx

(6)

sin(π/2-x)=cosx

cos(π/2-x)=sinx

tan(π/2-x)=cotx

(7)展开公式

sin(3π/2+x)=sin(π+π/2+x)=-sin(π/2+x)=-cosx

cos(3π/2+x)=cos(π+π/2+x)=-cos(π/2+x)=sinx

tan(3π/2+x)=-cotx

sin(3π/2-x)=sin(π+π/2-x)=-sin(π/2-x)=-cosx

cos(3π/2-x)=cos(π+π/2-x)=-cos(π/2-x)=-sinx

tan(3π/2-x)=cotx

两角公式

(1)两角和差公式

sin(x+y)=sinxcosy+sinycosx

sin(x-y)=sinxcosy-sinycosx

cos(x+y)=cosxcosy-sinxsiny

cos(x-y)=cosxcosy+sinxsiny

tan(x+y)=sin(x+y)/cos(x+y)=sinxcosy+sinycosx/cosxcosy-sinxsiny=tanx+tany/1-tanxtany

tan(x-y)=sin(x-y)/cos(x-y)=sinxcosy-sinycosx/cosxcosy+sinxsiny=tanx-tany/1+tanxtany

证明:单位圆作图

(2)二倍角公式

sin2x=2sinxcosx

推导:sin2x=sin(x+x)=sinxcosx+cosxsinx=2sinxcosx

cos2x=(cosx)²-(sinx)²=2cos²x-1=1-2sin²x (sin²x+cos²x=1)

推导:cos2x=cos(x+x)=cosxcosx-sinxsinx=cos²x-sin²x

tan2x=sin2x/cos2x=2sinxcosx/cos²x-sin²x=2tanx/1-tan²x

三倍角公式

sin3x=sin(2x+x)=sin2xcosx+cos2xsinx=2sinx(1-sin²x)+(1-2sin²x)sinx=3sinx-4sin³x

cos3x=cos(2x+x)=cos2xcosx-sinxsin2x=(2cos²x-1)cosx-2cosx(1-cos²x)=4cos³x-3cosx

tan3x=sin3x/cos3x=tanxtan(π/3+x)tan(π/3-x)

(3)半角公式

sin²(x/2)=(1-cosx)/2

cos²(x/2)=(1+cosx)/2

tan²(x/2)=1-cosx/1+cosx

推导:cosx=2cos²(x/2)-1=1-2sin²(x/2)

与三角函数诱导公式是什么(三角函数诱导公式是什么时候学的)相关的内容

csc是什么三角函数(sec是什么三角函数)

三角函数csc是余割函数,是直角三角形的斜边与锐角的对边之比,用csc(角度)表示。一个角的顶点与该角端点上的另一个任意点之间的距离除以下一个点的非零纵坐标。角的顶点与平面直角坐标系的原点重合,其起点与X轴正方向重合,称为cscx。

三角函数是基本的初等函数之一,它以角度(数学中最常用的弧系,下同)为自变量,角度对应任意角度的终边与单位圆的交点坐标或其比值为因变量。也可以等效定义为与单位圆相关的各种线段的长度。

三角函数在研究三角形、圆形等几何形状的性质中具有重要作用,也是研究周期现象的基本数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许其值扩展到任意实值,甚至复值。

三角函数起源

公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。

三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。

三角函数诱导公式是什么(三角函数诱导公式是什么时候学的)

诱导公式

(1)

sinx=sin(x+2kπ)

cosx=cos(x+2kπ)

tanx=tan(x+2kπ)

k∈Z

原理:终边相同的角同一三角函数值相同(或可用三角函数图像的周期性验证)

(2)

sin(-x)=-sinx

cos(-x)=cosx

tan(-x)=-tanx

(3)

sin(π+x)=-sinx

cos(π+x)=-cosx

tan(π+x)=tanx

(4)

sin(π-x)=sinx

cos(π-x)=-cosx

tan(π-x)=-tanx

原理:三角函数值中,正弦一二象限为正,余弦一四象限为正,正切一三象限为正(终边)

(5)

sin(π/2+x)=cosx

cos(π/2+x)=-sinx

tan(π/2+x)=-cotx

三角函数的所有公式(三角函数的所有公式及其推导公式)

诱导公式

(1)

sinx=sin(x+2kπ)

cosx=cos(x+2kπ)

tanx=tan(x+2kπ)

k∈Z

原理:终边相同的角同一三角函数值相同(或可用三角函数图像的周期性验证)

(2)

sin(-x)=-sinx

cos(-x)=cosx

tan(-x)=-tanx

(3)

sin(π+x)=-sinx

cos(π+x)=-cosx

tan(π+x)=tanx

(4)

sin(π-x)=sinx

cos(π-x)=-cosx

tan(π-x)=-tanx

原理:三角函数值中,正弦一二象限为正,余弦一四象限为正,正切一三象限为正(终边)

(5)

sin(π/2+x)=cosx

cos(π/2+x)=-sinx

tan(π/2+x)=-cotx

三角函数必背公式是什么(三角函数必背公式是什么意思)

半角公式

sin(A/2)=±√((1-cosA)/2)

cos(A/2)=±√((1+cosA)/2)

tan(A/2)=±√((1-cosA)/((1+cosA))

倍角公式

Sin2A=2SinA*CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

两角和与差公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-cossinB

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

积化和差公式

sinAsinB=-[cos(A+B)-cos(A-B)]/2

tan公式三角函数公式(tan(α±β)等于什么)

设α为任意角,终边相同的角的同一三角函数的值相等

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

补充

倍角公式

1、Sin2A=2SinA*CosA

2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

3、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )

降幂公式

1、sin^2(α)=(1-cos(2α))/2=versin(2α)/2

2、2cos^2(α)=(1+cos(2α))/2=covers(2α)/2

3、tan^2(α)=(1-cos(2α))/(1+cos(2α))

推导公式

1、1tanα+cotα=2/sin2α

2、tanα-cotα=-2cot2α

三角函数变换公式(三角函数变换公式总结)

三角函数变换公式

三角函数乘积变换和差公式

sinAsinB=-[cos(A+B)-cos(A-B)]/2

cosAcosB=[cos(A+B)+cos(A-B)]/2

sinAcosB=[sin(A+B)+sin(A-B)]/2

cosAsinB=[sin(A+B)-sin(A-B)]/2

三角函数和差变换乘积公式

sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]

sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]

cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]

cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

三角函数两角和与差公式

sin(A+B)=sinAcosB+cosAsinB

三角函数转换公式大全(三角函数转换公式大全表格)

三角函数转换公式大全

两角和差公式

sin(A+B) = sinAcosB+cosAsinB

sin(A-B) = sinAcosB-cosAsinB

cos(A+B) = cosAcosB-sinAsinB

cos(A-B) = cosAcosB+sinAsinB

tan(A+B) = (tanA+tanB)/(1-tanAtanB)

tan(A-B) = (tanA-tanB)/(1+tanAtanB)

cot(A+B) = (cotAcotB-1)/(cotB+cotA)

cot(A-B) = (cotAcotB+1)/(cotB-cotA)

三角和的公式

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

三角函数cos公式表(三角函数cos公式表初中)

三角函数cos公式有

cosA=(b^2+c^2-a ^2)/2bc; cosB=(a~2+c^2-b^2)/2ac; cosC=(a^2+b^2-c 2)/2ab等。

余弦定理的公式

a b c为三角形3边ABc为3边所对角

cosA=(b^2+c~2-a^2)/2bc

cosB=(a ^2+c~2-b^2)/2ac

cosC=(a^2+b^2-c^2)/2ab

c 2=a ^2+b 2-2ab*cosC

cos(a-b)=cosacosb+sinasinb

cos3a

=cos(2a+a)

=cos2acosa-sin2asina

=(2cos^ 2a-1)cosa-2(1-cos~2a)cosa

=4cos~3a-3cosa

三角函数cos公式

cos(-a) = cos(a)

sin(T /2 - a) = cos(a)

cos(T /2 - a) = sin(a)

sin(T /2 + a) = cos(a)

三角函数公式总结大全(三角函数公式总结大全图片)

诱导公式

(1)

sinx=sin(x+2kπ)

cosx=cos(x+2kπ)

tanx=tan(x+2kπ)

k∈Z

原理:终边相同的角同一三角函数值相同(或可用三角函数图像的周期性验证)

(2)

sin(-x)=-sinx

cos(-x)=cosx

tan(-x)=-tanx

(3)

sin(π+x)=-sinx

cos(π+x)=-cosx

tan(π+x)=tanx

(4)

sin(π-x)=sinx

cos(π-x)=-cosx

tan(π-x)=-tanx

原理:三角函数值中,正弦一二象限为正,余弦一四象限为正,正切一三象限为正(终边)

(5)

sin(π/2+x)=cosx

cos(π/2+x)=-sinx

tan(π/2+x)=-cotx

三角函数分别是什么边对什么边啊(三角函数分别是什么边对什么边啊?)

三角函数(也叫做"圆函数")是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。

三角函数分别是正弦、余弦、正切、余切,分别对应的边是:正弦是对边比斜边;余弦是邻边比斜边;正切是对边比邻边;余切是邻边比对边。

三角函数

三角函数的诞生源于人们对“测量技术”的需求。古希腊天文学家喜帕恰斯(Hipparchus,c.190 – c.120 BC)为了测量天球上的角度和距离,制作了人类历史上第一张“和弦表”(a table of chords),也被称为三角学的创始人。

所谓“和弦”即圆上两点之间的连线(更一般的也可以指任意曲线上的两点连线),如图1所示,设∠AOB=α,是圆上的圆心角,则AB即为圆心角所对应的和弦长度……