知识分类:文化教育 | 2024-04-01 周一 06:12

解一元二次方程的方法有很多,比较常见的有公式法、配方法和因式分解法。其中公式法适用一切一元二次方程,且比较简单,只要牢记求根公式就可以了。

求根公式如下

这个求根公式是针对一元二次方程的一般式ax^2+bx+c=0得到的。然而简单的死记硬背虽然能够把公式记牢,但却不是一种好办法。我们还要分析公式的结构、来源、应用以及拓展,这样才能真正形成数学能力,不仅能够巩固掌握公式的应用,还能融入自己的知识体系,既省力又高效,在以后的练习中才能灵活地应用。

在运用公式法时,未必要使用完整的公式。其中b^2-4ac又称为一元二次方程的判别式,常用表示。判别式的符合性质决定了一元二次方程根的情况:

当<0时,一元二次方程是没有实数根的,这时在实数范围内,就不需要继续运用完整的公式去求根了,只需要说明“方程没有实数根”就可以了。

当=0时,一元二次方程有两个相等的实数根,因为0的平方根仍是0,因此方程的根是x=-b/(2a),正好是对应的抛物线y=ax^2+bx+c的对称轴的形式。

只有当>0时,一元二次方程有两个不等的实数根,才需要用到整个求根公式。这时只要把方程的三个参数代入就可以了。但是千万要注意,对于关于x的一元二次方程bx^2+ax+c=0或者ax^2-bx+c=0,直接用求根公式表示它的根却是完全错误的。这就要涉及到求根公式的来源了。

求根公式其实是对一元二次方程的一般式ax^2+bx+c=0运用配方法求根得到的结果。有多少学生会自己动手去进行这番操作呢?只要自己动手推出过求根公式,就能过明白求根公式的实质,以后就不会出现乱用求根公式的情况了。

另外,因式分解法的实质,其实也与求根公式有关,记x1,x2表示求根公式的两个不同的结果,将一元二次方程ax^2+bx+c=0进行因式分解,就是把方程写成(x-x1)(x-x2)=0的形式。这样就不仅能在有理数的范围内进行因式分解,还可以在无理数的范围内进行因式分解了。

最后,一元二次方程的根与系数的关系,x1+x2=-b/a,x1x2=c/a,即韦达公式,其实也是由求根公式推出来的。

与求根公式解一元二次方程(求根公式解一元二次方程例题)相关的内容

一元二次方程根与系数的关系(怎样解二元一次方程)

设一元二次方程ax^2+bx+c=0(a、b、c为常数,且a≠0)的两实根为x'、x'',则有

(1)两根之和:x'+x''=-(b/a);

(2)两根之积:x'·x''=c/a。

注意事项

在实数范围内求一元二次方程ax^2+bx+c=0(a、b、c为常数,且a≠0)的实根时,只有当判别式△=b^2-4ac≥0时这个一元二次方程才有实数根。此时,用“根与系数关系”(即“韦达定理”)公式来表示两实根的和(“x'+x''=-(b/a)”)、积(“x'·x''=c/a”)才有意义。否则,是无意义的。

如:因为一元二次方程x^2+2x+2=0的判别式小于0,方程无实数解。(注:事实上,配方后也能得到(x+1)^2=-1,显然是无实数解的)。此时,再代入根与系数关系的公式:x'+x''=-2、x'·x''=2来求两实根的和与积是无意义的。

根与系数的关系简单相关系数

求根公式解一元二次方程(求根公式解一元二次方程例题)

解一元二次方程的方法有很多,比较常见的有公式法、配方法和因式分解法。其中公式法适用一切一元二次方程,且比较简单,只要牢记求根公式就可以了。

求根公式如下

这个求根公式是针对一元二次方程的一般式ax^2+bx+c=0得到的。然而简单的死记硬背虽然能够把公式记牢,但却不是一种好办法。我们还要分析公式的结构、来源、应用以及拓展,这样才能真正形成数学能力,不仅能够巩固掌握公式的应用,还能融入自己的知识体系,既省力又高效,在以后的练习中才能灵活地应用。

在运用公式法时,未必要使用完整的公式。其中b^2-4ac又称为一元二次方程的判别式,常用表示。判别式的符合性质决定了一元二次方程根的情况:

当<0时,一元二次方程是没有实数根的,这时在实数范围内,就不需要继续运用完整的公式去求根了,只需要说明“方程没有实数根”就可以了。

当=0时,一元二次方程有两个相等的实数根,因为0的平方根仍是0,因此方程的根是x=-b/(2a),正好是对应的抛物线y=ax^2+bx+c的对称轴的形式。

求根公式解一元二次方程?(求根公式解一元二次方程例题)

解一元二次方程的方法有很多,比较常见的有公式法、配方法和因式分解法。其中公式法适用一切一元二次方程,且比较简单,只要牢记求根公式就可以了。

求根公式如下


这个求根公式是针对一元二次方程的一般式ax^2+bx+c=0得到的。然而简单的死记硬背虽然能够把公式记牢,但却不是一种好办法。我们还要分析公式的结构、来源、应用以及拓展,这样才能真正形成数学能力,不仅能够巩固掌握公式的应用,还能融入自己的知识体系,既省力又高效,在以后的练习中才能灵活地应用。

在运用公式法时,未必要使用完整的公式。其中b^2-4ac又称为一元二次方程的判别式,常用表示。判别式的符合性质决定了一元二次方程根的情况:

当<0时,一元二次方程是没有实数根的,这时在实数范围内,就不需要继续运用完整的公式去求根了,只需要说明“方程没有实数根”就可以了。

当=0时,一元二次方程有两个相等的实数根,因为0的平方根仍是0,因此方程的根是x=-b/(2a),正好是对应的抛物线y=ax^2+bx+c的对称轴的形式。

求根公式解一元二次方程(求根公式解一元二次方程例题)

解一元二次方程的方法有很多,比较常见的有公式法、配方法和因式分解法。其中公式法适用一切一元二次方程,且比较简单,只要牢记求根公式就可以了。

求根公式如下

这个求根公式是针对一元二次方程的一般式ax^2+bx+c=0得到的。然而简单的死记硬背虽然能够把公式记牢,但却不是一种好办法。我们还要分析公式的结构、来源、应用以及拓展,这样才能真正形成数学能力,不仅能够巩固掌握公式的应用,还能融入自己的知识体系,既省力又高效,在以后的练习中才能灵活地应用。

在运用公式法时,未必要使用完整的公式。其中b^2-4ac又称为一元二次方程的判别式,常用表示。判别式的符合性质决定了一元二次方程根的情况:

当<0时,一元二次方程是没有实数根的,这时在实数范围内,就不需要继续运用完整的公式去求根了,只需要说明“方程没有实数根”就可以了。

当=0时,一元二次方程有两个相等的实数根,因为0的平方根仍是0,因此方程的根是x=-b/(2a),正好是对应的抛物线y=ax^2+bx+c的对称轴的形式。

二次函数求根公式(二次函数求根公式推导)

二次函数求根公式法

推导一下ax^2+bx+c=0的解。移项,ax^2+bx=-c两边除a,然后再配方,x^2+(b/a)x+(b/2a)^2=-c/a+(b/2a)^2[x+b/(2a)]^2=[b^2-4ac]/(2a)^2两边开平方根,解得x=[-b±√(b2-4ac)]/(2a)。

二次函数求根公式

二次函数有很多种,ax^2+bx+c=0,(a不等于0,b^2-4ac>0)的二次函数只是其中的一种,其解是x=[-b±(b^2-4ac)^(1/2)]/2a,若b^2-4ac<0,则函数将产生虚根,x=[-b±i(b^2-4ac)^(1/2)]/2a式中i为虚数。

函数ax^2+bx+c+dy^2+ey+fxy+......=0,(未知数的最高项次不全为0)叫做多项式函数;

(ax^2+bx+c+dy^2+ey+fxy+......)/(px^2+qx+r+my^2+ny+sxy+......)=g,(未知数的最高项次不全为0.分母不为0)叫做分式函数;

(ax^2+bx+c+dy^2+ey+fxy+......)^(1/2)=m,(未知数的最高项次不全为0)叫做无理函数。

一元三次方程的求根公式(一元三次方程的求根公式推导)

一元三次方程万能化简公式:ax3+bx2+cx+d=0,而且一元三次方程只含有一个未知数(即“元”),并且未知数的最高次数为3次的整式方程。

历史上,最早尝试一元三次方程的根式解的,是一批意大利数学家.

意大利数学家Scipione del Ferro(1465年——1526年)首先得出不含二次项的一元三次方程求根公式。

之后,另一位意大利数学家Niccolò Fontana "Tartaglia"(1499年或1500年——1557年)独立得出一元三次方程求根公式。

意大利数学家Girolamo Cardano(1501年——1576年)拜访了Tartaglia,并获得了包含一元三次方程求根公式的暗语般的藏头诗。

很快,Cardano从藏头诗中悟出了求解一元三次方程的方法,所以现在这个方法经常被称为“Cardano法”。

再往后,Cardano的学生Lodovico Ferrari(1522年——1565年)在一元三次方程的求根公式的基础之上,给出了一元四次方程的求根公式。

扩展

一元二次方程公式

ax²+bx+c=0(a≠0)

求根公式解一元二次方程?(求根公式解一元二次方程例题)

解一元二次方程的方法有很多,比较常见的有公式法、配方法和因式分解法。其中公式法适用一切一元二次方程,且比较简单,只要牢记求根公式就可以了。

求根公式如下


这个求根公式是针对一元二次方程的一般式ax^2+bx+c=0得到的。然而简单的死记硬背虽然能够把公式记牢,但却不是一种好办法。我们还要分析公式的结构、来源、应用以及拓展,这样才能真正形成数学能力,不仅能够巩固掌握公式的应用,还能融入自己的知识体系,既省力又高效,在以后的练习中才能灵活地应用。

在运用公式法时,未必要使用完整的公式。其中b^2-4ac又称为一元二次方程的判别式,常用表示。判别式的符合性质决定了一元二次方程根的情况:

当<0时,一元二次方程是没有实数根的,这时在实数范围内,就不需要继续运用完整的公式去求根了,只需要说明“方程没有实数根”就可以了。

当=0时,一元二次方程有两个相等的实数根,因为0的平方根仍是0,因此方程的根是x=-b/(2a),正好是对应的抛物线y=ax^2+bx+c的对称轴的形式。

二元一次方程求根公式(二元一次方程求根公式推导过程)

设一个二元一次方程为

ax^2+bx+c=0,其中a不为0,因为要满足此方程为二元一次方程所以a不能等于0.

求根公式为

x1=(-b+(b^2-4ac)^1/2)/2a ,x2=(-b-(b^2-4ac)^1/2)/2a

补充

韦达定理说明了一元二次方程中根和系数之间的关系。

法国数学家弗朗索瓦·韦达于1615年在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。 由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。

一元二次方程有求根公式

设ax²+bx+c=0(a≠0),判别式△=b²﹣4ac

x1,2=(﹣b±√△)/(2a)

△>0时,不相等的两个实根;

△=0时,相等的两个实根;

△<0时,一对共轭复根。

二元一次方程组也有求根公式(P.S.是方程组)

设a1x+b1y=c1

a2x+b2y=c2

求那三个行列式

a+b&ge;2根号ab是什么公式(a bac式的词语四字)

a+b≥2根号ab是基本不等式的公式。基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。在使用基本不等式时,要牢记“一正”“二定”“三相等”的七字真言。“一正”就是指两个式子都为正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指当且仅当两个式子相等时,才能取等号。

不等式分为严格不等式与非严格不等式,用纯粹的大于号、小于号连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)连接的不等式称为非严格不等式,或称广义不等式。不等式既可以表达一个命题,也可以表示一个问题。

一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。

其中,两边的解析式的公共定义域称为不等式的定义域。

如果x>y,那么yy;(对称性)

如果x>y,y>z;那么x>z;(传递性)

如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)

三角函数诱导公式是什么(三角函数诱导公式是什么时候学的)

诱导公式

(1)

sinx=sin(x+2kπ)

cosx=cos(x+2kπ)

tanx=tan(x+2kπ)

k∈Z

原理:终边相同的角同一三角函数值相同(或可用三角函数图像的周期性验证)

(2)

sin(-x)=-sinx

cos(-x)=cosx

tan(-x)=-tanx

(3)

sin(π+x)=-sinx

cos(π+x)=-cosx

tan(π+x)=tanx

(4)

sin(π-x)=sinx

cos(π-x)=-cosx

tan(π-x)=-tanx

原理:三角函数值中,正弦一二象限为正,余弦一四象限为正,正切一三象限为正(终边)

(5)

sin(π/2+x)=cosx

cos(π/2+x)=-sinx

tan(π/2+x)=-cotx