知识分类:文化教育 | 2024-03-28 周四 10:09

分数原是指整体的一部分,或更一般地,任何数量相等的部分。表现形式为一个整数a和一个整数b的比(a为b倍数的假分数是否属于分数存在争议 )。分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。分子在上,分母在下。当分母为100的特殊情况时,可以写成百分数的形式,如1%。

分数在数的学习中占很重要的地方为,很多人不了解分数的意义,其实很简单,它的意义为:一个物体,一个图形,一个计量单位,都可看作单位“1”。把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。分子与分母同时乘或除以一个相同的数(0除外),分数的大小不变,这就是分数的基本性质。

分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。读作几分之几。分数可以表述成一个除法算式:如二分之一等于1除以2。其中,1 分子等于被除数,- 分数线等于除号,2分母等于除数,而0.5分数值则等于商。分数还可以表述为一个比,例如;二分之一等于1:2,其中1分子等于前项,—分数线等于比号,2分母等于后项,而0.5分数值则等于比值。

分数还有一个有趣的性质:一个分数不是有限小数,就是无限循环小数,像π等这样的无限不循环小数,是不可能用分数代替的。分数的另一个性质是:当分子与分母同时乘或除以相同的数(0除外),分数值不会变化。因此,每一个分数都有无限个与其相等的分数。利用此性质,可进行约分与通分。

分数的历史

最早的分数是整数倒数:代表二分之一的古代符号,三分之一,四分之一,等等。埃及人使用埃及分数c。 1000 bc。大约4000年前,埃及人用分数略有不同的方法分开。他们使用最小公倍数与单位分数。他们的方法给出了与现代方法相同的答案。埃及人对于Akhmim木片和二代数学纸莎草的问题也有不同的表示法。

希腊人使用单位分数和(后)持续分数。希腊哲学家毕达哥拉斯(c。530 bc)的追随者发现,两个平方根不能表示为整数的一部分。 (通常这可能是错误的归因于Metapontum的Hippasus,据说他已被处决以揭示这一事实)。在印度的150名印度人中,耆那教数学家写了“Sthananga Sutra”,其中包含数字理论,算术学操作和操作。